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Abstract
We study theoretically stimulated Raman scattering (SRS) in a nonlinear
dielectric microcavity and compare SRS thresholds for the cavity and the
bulk material it is made of. We show that cavity SRS enhancement results
solely from the intensity build up in the cavity and from the differences of
the SRS dynamics in free and confined space. There is no significant
modification of the Raman gain due to cavity QED effects. We show that the
SRS threshold depends significantly on the nature of the dominating cavity
decay as well as on the coupling technique with the cavity used for SRS
measurements.

Keywords: Cavity QED, whispering gallery modes, stimulated
Raman scattering

1. Introduction

Spontaneous emission processes may be either enhanced or
inhibited in a cavity due to a modification of the density
of electromagnetic states compared with the density in
a free space [1, 2]. The changes in the properties of
spontaneous emission play an important role in lasers and
lead to ‘thresholdless lasing’ [3–5]. There is great activity in
theoretical and experimental investigations of those and other
cavity quantum electrodynamics effects [6–11].

Substantial optical power enhancement within a high-
finesse optical cavity has recently yielded continuous wave
Raman lasers with low threshold and large tunability [12, 13].
Such properties make cavity-enhanced continuous wave
Raman lasers attractive for high resolution spectroscopy,
remote sensing, atomic physics, and telecommunications.
Reducing the cavity size may further improve the performance
of the lasers. Open dielectric spherical microcavities are
promising for those purposes.

Various cavity effects, including resonance-enhanced
fluorescence [14], were observed with dielectric microsphere
resonators [15–17]. A dielectric microsphere possesses natural
modes of light oscillations that are usually called whispering
gallery modes (WGMs) or morphology-dependent resonances.
WGMs may have high quality factors and small volumes which
is very important for cavity QED.

An enhancement of stimulated Raman scattering (SRS)
is one of the effects demonstrated in spherical microcavities.
Low threshold SRS was observed with pulsed [18–20] and
continuous wave [21, 22] optical pumping in micrometre-size
liquid droplets. Microcavity QED enhancement of Raman gain
has been inferred from measurements of a dependence of the
SRS threshold on the size and material of the microdroplets,
and comparison with the values of SRS threshold reported
for liquid core fibers having equivalent interaction length and
core composition [21, 22]. This enhancement has been linked
to the cavity modification of the properties of usual lasers.
A theory of the Raman gain modification that explains the
experimental results has been developed [23, 24]. However,
recent experiments with silica microspheres have not shown
any significant change in SRS gain which might be attributed
to quantum effects [25]. It was thought that the quantum
effects were not observed due to experimental difficulties with
measuring the properties of very small cavities.

The contradiction of the recent and previous experimental
results is fundamentally important. Indeed, in a Raman laser
both pump and generated radiation may be tuned far away from
the corresponding molecular/atomic transitions. Usually, in
Raman systems it is possible to eliminate the excited states
adiabatically and consider light interaction with degenerate
ground states only. A cavity may not usually influence these
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states. It is not clear, therefore, if the cavity enhancement
or inhibition of spontaneous emission may change the SRS
process significantly.

Nonlinear optics in microcavities is important not only
from the purely theoretical, but also from a practical,
point of view. Recently created microcavity Raman
lasers [25], for example, represent a route to compact,
ultralow threshold sources for numerous wavelength bands
that are usually difficult to access. Small WGM cavities
made of crystals possessing quadratic nonlinearities result
in efficient electro-optic light modulation and microwave
photonic reception [26, 27]. Fabrication and handling of
cavities with very small size and high quality factors is a
complicated technological problem. It is important to find
a tradeoff between the importance of the cavity size decrease
and the effort spent. Better understanding of size- and Q-
factor-dependent cavity enhancement of nonlinear processes
is necessary.

We show here theoretically that the increase in the SRS
occurs solely due to energy accumulation in the cavity modes.
No cavity QED associated Raman gain enhancement exists,
unlike the cavity enhancement of the spontaneous emission.
We see an explanation of the result in the fact that SRS is
essentially a stimulated nonlinear process not influenced by the
density of states of the surrounding reservoir. An atom plays
the role of a transducer between pump and probe fields with
no spontaneous processes involved. The atomic transitions
may be off-resonant with respect of the cavity modes. In this
case SRS is enhanced due to the classical effect of the field
accumulation in the cavity, but no resonant interaction of the
atom and the cavity modes occurs, so the cavity modification
of the density of quantum states does not change atomic
properties.

To study SRS we consider outside-pumped three-level �

particles embedded either in an optical fiber or in a dielectric
cavity made of the same host material. We show that the
intracavity SRS is modified in a similar way to a microcavity
modification of a laser emission process. This modification,
however, does not explain the results of experiments [21, 22].
We propose an explanation of the size dependent efficiency
of Raman scattering observed in [21, 22] that attributes the
experimental results to a size dependent coupling of a free
space light beam to high-Q WGMs. We also show that the
size dependence of the SRS threshold varies significantly as
the nature of the major cavity losses changes.

2. SRS threshold estimations for a generic active
medium

The Raman gain of a Stokes field in an SRS process may
be presented as exp(gc Ic Lc), where gc is a cavity Raman
gain factor, Ic is an intensity of the pumping light stored in
the cavity, and Lc is an effective cavity path length. This
expression should be compared with similar expression for the
bulk material, exp(gb Ib Lb), where gb is a bulk Raman gain
factor, Ib is the intensity of the pumping light in the material,
and Lb is a length of the sample. To make the comparison valid
we assume that: (i) Lc = Lb, (ii) the cavity does not have any
absorption losses, and (iii) the input intensity of the pump light
for the bulk material and for the cavity is the same.

Let us estimate the threshold pump power necessary for
generation of Stokes radiation in an open dielectric spherical
cavity. The intensity build up factor for the light resonant with
a cavity mode is

Ic

I0
= Qλ

π2n0a
, (1)

where I0 is the intensity of the input light, Ic is the effective
intensity of the light in the cavity, λ is the light wavelength, a
is the radius of the microsphere, n0 is the index of refraction of
the microsphere host material, and Q is the cavity mode quality
factor. We assume that the effective cross-sectional area (A)
is the same for the input beam and for the WGM.

The effective interaction length in the cavity is

Lc = Qλ

2πn0
. (2)

Assuming now that the pump and the Stokes waves are both
resonant with the WGMs of the cavity which have quality
factors Q p and QS respectively we derive the condition for
Raman amplification (round trip Raman gain exceeds round
trip losses)

gcξ I0
Q pλp

π2n0a
>

2πn0

QSλS
, (3)

or, assuming that the mode volume is Vm ≈ 2πaA and the
pump power is P01 = I0A,

P0 1 >
π2n2

0

ξgc QS Q p

Vm

λpλS
, (4)

where ξ < 1 is a numeric parameter that describes the
noncritical coupling of the pump to the mode as well as the non-
perfect overlap between the pump and Stokes modes, and A is
the effective cross-sectional area of the beam. Expression (4)
corresponds to the expression presented in [25] if gc ≡ gb.

Equation (4) is purely classical. It does not take into
account an enhancement of Raman gain due to cavity QED
effects which might be present in the system if the analogy
between enhancement of stimulated emission [3] and SRS
works. Two hypotheses of cavity QED enhancement of Raman
gain were proposed.

A rough single dimension estimation of the enhancement
gives a value equal to the ratio of the free spectral range of the
cavity and the width of the Raman gain [21]:

gc

gb
≈ c

π2n0aG
(5)

if c/(π2n0aG) > 1, or gc = gb if c/(π2n0aG) < 1, where
G is the homogeneous linewidth of the bulk Raman gain. As
one might see from (5), resonantly enhanced Raman gain is
possible for comparatively small spheres, while the gain is
equal to the gain in the bulk for large spheres. Hence, in the
case of comparatively small cavities, equation (4) should be
modified according to equation (5) as

P0 2 >
π4n3

0

ξ QS Q p

Vma

λpλS

G
gbc

. (6)

Equation (6) demonstrates a cubic dependence of the Raman
gain threshold on the cavity radius a (Vm ∼ a2). Experimental
studies [21, 22], however, show ∼a4 dependence.
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Figure 1. A three-level � system coupled by two fields.

To avoid this inconsistency, another Raman gain
enhancement factor, proportional to the Purcell factor [1], was
introduced heuristically [21] and confirmed theoretically [24]

gc

gb
≈ 3

4π

λ2
pc

VmG
. (7)

This factor is ∼λ/a times as much as the one-dimensional
factor (5). The threshold Raman power is here

P0 3 >
4π3n2

0

3ξ QS Q p

V 2
m

λ3
pλS

G
gbc

. (8)

In what follows we show, with the example of a three-level
�Raman medium, that equation (4), along with condition gc =
gb, not equations (5)–(8), does describe the SRS threshold in a
microcavity, and propose a classical hypothetical explanation
of experimentally observed [21, 22] SRS threshold behaviour.

3. A model of the active Raman system

To compare the Raman gain for unconfined SRS and SRS in a
high-Q microcavity, we consider a three-level atomic system
in � configuration acting as a Raman medium (see figure 1).
The electro-dipole allowed transitions of the atom, |a〉 → |c〉
and |a〉 → |b〉, are driven by a strong pump field E p and a
weak probe (Stokes) field ES, respectively. E p and ES are
detuned from the corresponding atomic transitions on values
� + δ and � − δ, respectively. In what follows we assume
that |�| � |δ|. The population of the excited atomic level
|a〉 decays in a free space to the levels |b〉 and |c〉 with rate �

(|�| � �).
We consider an open atomic system. The Raman

population inversion in the medium is achieved via pumping of
the atoms in state |c〉 into the interaction region and subsequent,
time delayed, removal of the atoms from the region. The
pumping and removing may be formally introduced by rates r
and γ0. Ratio r/γ0 determines an average number N of atoms
participating in the interaction.

A coherent evolution of the atom may be described
in slowly-varying amplitude and phase approximations by
Hamiltonian

Ĥ = h̄�|a〉〈a| + h̄δ(|b〉〈b| − |c〉〈c|)
− h̄(|a〉〈b|	S + |a〉〈c|	p + adj), (9)

where 	S = ℘ ÊS/h̄ and 	p = ℘ Ê p/h̄ are the Rabi
frequencies of the Stokes and pump fields, ℘ is the dipole
moment of the allowed atomic transitions and adj denotes
the adjoint. In the case of cavity QED interaction, it is
convenient to present the amplitudes of the electromagnetic
fields via dimensionless creation and annihilation operators.
For example, for the pump field, we have

Ê p =
√

2πh̄ωp

Vp
âp, (10)

where ωp is the carrier frequency of the pump field, Vp is
an effective mode volume for the pump field, and âp is the
annihilation operator. Note that we are considering a circular
wave in the cavity, not a standing wave. This gives

√
2

difference in κ compared to the conventional standing wave
case [28].

It is convenient to introduce the parameter

κ =
√

2π℘2ωp

Vph̄
(11)

which describes a strength of coupling of the atom and a cavity
and is essential for an explanation of modification of atomic
spontaneous emission in the cavity. We assume that � is the
radiative decay rate so that � = 4ω3

p℘
2/(3c3h̄). In what

follows we assume that the cavity modes are nearly identical,
so that ωp 	 ωS = ω0, Vp 	 VS = Vm .

4. Raman amplification in transient regime

To study Raman amplification in a free space we first find
a steady state solution for the set of equations for elements
of atomic density matrix ρi j . The coherent part of the set
is generated by Hamiltonian (9) as ih̄ρ̇ = [Ĥ , ρ], where
ρ = ∑

ρi j |i〉〈 j |. The decays are introduced via general
reservoir theory in the Weisskopf–Wigner approximation [28].
We substitute the matrix element of atomic polarization ρab

into Maxwell equations for the Stokes field and find the Raman
gain.

The propagation equation in slowly-varying amplitude
and phase approximations may be presented as

d

dz
ES(z) = i

2πω0

cV
N℘ρab, (12)

where N = r/γ0 is the total number of atoms in the interaction
region and V is the volume of the interaction region.

The evolution of the �-system is described by the set
of density matrix equations, which includes equations for
polarizations

ρ̇ab + (i� + � + γ0)ρab = i	S(ρbb − ρaa) + i	pρcb, (13)

ρ̇ca + (−i� + � + γ0)ρca = i	∗
p(ρaa − ρcc) − i	∗

Sρcb, (14)

ρ̇cb + γ0ρcb = −i	Sρca + i	∗
pρab, (15)

and for populations of the system

ρ̇bb = −γ0ρbb + �ρaa − i(	Sρba − 	∗
Sρab), (16)
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ρ̇cc = γ0(1 − ρcc) + �ρaa − i(	pρca − 	∗
pρac), (17)

ρ̇aa = −(2�+γ0)ρaa +i(	Sρba −	∗
Sρab)+i(	pρca −	∗

pρac),

(18)
where we have assumed δ = 0. The normalization condition
for the population of atomic levels is

ρaa + ρbb + ρcc = 1. (19)

The solution of equations (13)–(19) completely describes the
behaviour of the �-system.

The steady state solution of equations (13)–(15) for atomic
polarization ρab is

ρab = i	S

�̃

(
γ0 + |	S |2

�̃∗
)
nba − |	p|2

�̃∗ nca

γ0 + |	S |2
�̃∗ + |	p |2

�̃

, (20)

where �̃ = i� + � + γ0 and ni j = ρi i − ρ j j . The equation for
the atomic polarization on the pump transition may be derived
in a similar way.

We are interested here in unsaturated Raman amplification
of the Stokes wave, so we assume that the detuning � is
large, such that γ0|�| � |	p|2 � |	S|2. Using the above
approximations we derive ρcc ≈ 1, while ρaa ≈ 0 and
ρbb ≈ 0. The atomic polarization on the Stokes transition
may be estimated as

ρab 	 − i	S

γ0

|	p|2
|�|2 . (21)

Substituting (21) into (12) we arrive at

d

dz
ES = 3

8π

r

γ0

λ2
S

V

�|	p|2
γ0|�|2 ES. (22)

Therefore, the intensity of the Stokes wave increases as IS (z) =
IS(0) exp(gb Ipz), where Ip is the intensity of the pump which
is connected with the pump Rabi frequency as

|	p|2 = 3λ3
p�

8π2h̄c
Ip. (23)

The bulk Raman gain in the case of the far detuned � system
is given by

gb =
(

3

4π

)2 r

γ0

λ2
Sλ

2
p

V

�2

|�|2
1

h̄ωSγ0
. (24)

Let us estimate now the power of the Stokes field generated
in the SRS process. We consider the one-dimensional case, for
example, SRS in a fiber that contains an active Raman medium.
Equations for the pump and Stokes modes propagating in the
fiber may be presented in the following way [29]

d

dz
Pp(z) = −αp Pp(z) −

NS∑
j=1

gb

A
ωp

ωS j
Pp(z)PS j(z), (25)

d

dz
PS j(z) = −αS PS j(z) +

gb

A
Pp(z)PS j(z), (26)

where Pp(z) and PS j(z) are the values of the power of the pump
wave and j th mode of Stokes wave, NS is the total number of
Stokes modes excited in the process, αp and αS are decays

for the pump and the Stokes waves, ωp and ωS j are pump and
Stokes frequencies, and gb is the bulk Raman gain coefficient
of the medium.

To find the threshold pump power necessary for substantial
Raman scattering we assume that there is no nonlinear
depletion of the pump so

Pp(z) 	 Pp(0)e−αp z . (27)

Then

PS j(z) = PS j(0) exp

{
−zαS +

gb Pp(0)

Aαp
[1 − exp(−zαp)]

}
.

(28)
Assuming that the length of the fiber exceeds the effective
absorption length of the pump Le f f = α−1

p and αp ≈ αS we
finally get

PS j(L) 	 PS j(0) exp

[
gb Pp(0)

Aαp
− 1

]
. (29)

The Stokes field starts to grow if

gb Pp(0)

Aαp
> 1. (30)

This is a conventional definition of the SRS threshold in a
transient regime.

However, the Stokes field generated from electromagnetic
vacuum fluctuations may be negligible if the pump power is
small enough. The critical pump power Pp(0) when the SRS
process becomes important may be evaluated from

NS∑
j=1

PS j(0) exp

[
gb Pp(0)

Aαp

]
= ζ Pp(0), (31)

where ζ is a conversion ratio PS(Lb)/Pp(Lb).
The initial Stokes power may be estimated using an

assumption that any Stokes mode, longitudinal as well as
transverse, has an input flux of one photon per mode [29].
So,

NS∑
j=1

PS j(0) ≈ h̄ωS
An2

0

π2λ2
s

[
πAαp

4gb Pp(0)

]1/2

γg, (32)

where γg is the full width at half maximum of a Lorentzian
fit of the Raman gain profile. For the open � configuration
considered above, γg = γ0. For example, for a single mode
fiber, equation (31) transforms to

ζ

[
gb Pp(0)

Aαp

]3/2

exp

[
−gb Pp(0)

Aαp

]
= h̄ωS

√
π

2

gbγg

Aαp
. (33)

Generally, condition (30) is assumed to be a threshold for
Raman generation in a transient regime. We expect that this is
only the necessary condition for the generation. The threshold
value for the pump power is to be found from (33). For
example, for SRS in silica fiber and for ζ = 1, the pump
power is much larger than the threshold when the pump exceeds
absorption: gb Pp(0)/(Aαp ) � 20 [29].

Let us find now the Raman gain in the cavity QED case.
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5. Raman amplification in a cavity

The interaction of the cavity electromagnetic fields and the
atoms in the cavity may be described in a similar way to the
above. However, we should consider now the total number
of atoms interacting with the field. Atoms are independent
in the case of interaction in free space and, as a result, the
electromagnetic susceptibility of the atomic medium is a linear
function of the number of atoms participating in the interaction.
We find the solution of the interaction problem with the help
of the usual density matrix equations (13)–(19). On the other
hand, atoms in a cavity influence each on the other, and the
method of solution should be modified appropriately. The
susceptibility may become a nonlinear function of the number
of atoms in the case of cavity-mediated interaction [30].

It is convenient to rewrite the Hamiltonian for a � atom
in a different form [31, 32]:

H̃ = h̄

[
2δ − κ2

�
(â†

S âS − â†
pâp)

]
|b〉〈b|

+ h̄
κ2

�
(â†

S âp|b〉〈c| + â†
pâS |c〉〈b|), (34)

where we used equations (10) and (11) and assumed that � is
large. The excited state |a〉 was adiabatically eliminated [33].

To proceed further we derive a set of semiclassical rate
equations

ṅS = −2γSnS + κ̃N [n p(nS + 1)σcc − nS(n p + 1)σbb], (35)

ṅ p = −2γpn p − κ̃N [n p(nS + 1)σcc

− nS(n p + 1)σbb] +
4Pp

h̄ωp
, (36)

σ̇cc = γ0(1 − σcc) − κ̃[n p(nS + 1)σcc − nS(n p + 1)σbb], (37)

σ̇bb = −γ0σbb + κ̃[n p(nS + 1)σcc − nS(n p + 1)σbb], (38)

where

κ̃ = 2κ4

�2γ0
, (39)

n p and nS are the averaged photon numbers in the pump
and Stokes modes, σcc and σbb are the averaged collective
populations of the corresponding atomic levels and 2γS =
cαS. Equations (35)–(38) are to be compared with the rate
equations for a four-level microlaser [3, 34–36]. The quantum
modification of (35)–(38) might be easily seen as the unity
factors added to the photon numbers nS and n p. This change
modifies the behaviour of the system close to threshold and/or
when the system operates with very weak pump. The Raman
microlaser is thresholdless in the same sense as the usual
microlasers [3, 34–36]. For example, the number of Stokes
photons is never zero if σcc ≈ 1 and Pp �= 0.

In the case where the drive field is not influenced by the
Stokes field (n p � nS) and σcc ≈ 1 the threshold condition for
the exponential growth of the Stokes field formally coincides
with (30) and condition (4):

κ̃N
2γS

n p = gb Ppc

Aαp
> 1, (40)

where we assumed that αp = αS and Ppc is the effective pump
power inside the cavity, Ppc/Pp = Qλ/(π2a). This is the
main result of the paper. There is no cavity QED increase

of the Raman gain. Hence, condition (4) is correct for the
description of the SRS in a cavity.

It is interesting now to look at the threshold condition for
Raman lasing in the sense of equation (33), because, generally,
SRS is observed when the numbers of generated and pump
photons are comparable. We derive two steady state balance
equations from (35)–(38):

n p = 4Pp Q p

h̄ω2
p

− γS

γp
nS, (41)

σcc = 1 − 2γS

Nγ0
nS, (42)

where (41) shows that the total number of photons leaving the
cavity is equal to the number of photons entering the cavity,
and (42) shows that number of signal photons leaving the cavity
(2γSnS) is always less than the number of atoms entering the
cavity (γ0N = r ).

Let us assume that γS = γp and nS = n p � 1 (ζ = 1).
The Stokes photon number and atomic pumping rate r may be
found from the steady state solution of (35) along with (41)
and (42):

nS =
(

1 − 2Aαp

gb Ppc

)
r

2γS
= 2Pp Q p

h̄ω2
p

. (43)

Therefore, because the photon number is positive (nS � 0),
the effective gain factor gb Ppc/(Aαp) should be more than
2, independent of the pumping rate r . This is an order of
magnitude less than the gain value for maintaining ζ = 1
in the transient regime, even after we took into account the
power increase in the cavity. This might be the reason why
the experimentally observed Raman threshold in a cavity is
lower than the threshold observed for the transient regime.
The result, however, is rather classical and it does not explain
the dependence of the Raman gain on the cavity size measured
in [21, 22].

6. Size dependence of SRS threshold: a hypothesis

As shown above, Raman gain is not enhanced due to cavity
QED effects (gb = gc). The question is, how to explain the
cavity size dependent Raman gain behaviour (SRS threshold
decreases as ∼a4) observed in [21, 22]. To begin with, we
modify the threshold condition (4) as

P0 >
π2n2

0 Q Pc

ξ1gb QS Q2
p

Vm

λpλS
, (44)

where ξ1 < 1 is a parameter indicating that mode overlap is not
complete, and Q Pc is a part of cavity quality factor that results
from the coupling (Q Pc > Q p). For the critical coupling one
has Q Pc = 2Q p . Cavity parameters ξ1, Vm , Q p , QS , and Q Pc

are size dependent, while gb is not.
Let us estimate the changes of these parameters for an

interaction of a dielectric sphere with a free beam of light.
First and foremost, there is no critical coupling with a high
order WGM in this case. Ratio Q Pc/Q p is always much
larger than 2. For example, let us consider radiative coupling
with a microsphere. This kind of coupling prevails for small
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microspheres, where quality factor is determined by radiative
decay rate.

Radiative coupling of a microsphere and a beam of light
may be described using generalized Lorentz–Mie scattering
theory [37–40]. Exact calculation of ratio Q Pc/Q p is out of
the scope of the present paper. We use the modified ray theory
described in [41] and confirmed in [42].

Let us consider a light beam interacting with a sphere. The
beam cross-section radius is comparable with the sphere radius
a (total cross-section ∼2πa2). The scattering cross-sectional
mode area is ∼aλ [41]. Therefore, only ∼λ/(2πa) of the
total power interacts with the sphere. To estimate Q Pc/Q p

we assume that the radiative losses and optical pumping have
the same origin and are proportional to the interaction surface
area. The radiative emission occurs from all the sphere surface
(area equal to 4πa2). The optical pumping is going through
a surface belt with thickness ∼λ. Therefore, the ratio of the
coupling and total quality factors is proportional to the sphere
radius Q Pc/Q p ∼ a.

The mode volume for a high order WGM is proportional
to ∼a2. However, because a plane wave excites all modes
under the microsphere surface, not just a single mode ‘belt’,
the excited volume depends on the higher power of the radius
∼a2+1/3. Moreover, because the increase of the microsphere
size reduces coupling to the high order WGM, the light may
primarily excite the lower order modes for bigger cavities.
This may result in even faster growth of the effective mode
volume with radius a. Hence, the SRS threshold will decrease
faster than a3+1/3 if we assume that the system behaviour is
determined by radiative processes and the quality factor for
each cavity size is nearly the same.

The last assumption, based on the experimental
observations, that the measured quality factors for small
droplets does not vary significantly with their sizes supports
the hypothesis that a free light beam excites different orders
of cavity modes with cavity radius increase. Theoretically,
the radiative quality factor of an ideal WGM should increase
exponentially with the mode radius. Had it been possible
to excite these modes all the time, the threshold power (44)
would have exponentially decreased (not increased, as in the
experiments) with cavity radius decrease.

Generally, the quality factor of a dielectric microcavity is
determined not by the radiative tunnelling emission, but by the
surface and volume scattering and absorption [43–48]. The
surface scattering may aid the coupling of the free light beam
and modes. The above estimations and conclusions are valid
in this case as well.

All the above inconsistencies and problems with
determining which mode is excited, what is the value of the
mode volume, and what is the mode quality factor cease if
one uses special coupling techniques for the light and the
microspheres (see, for example, [25, 44]). As the result, the
carefully measured SRS threshold shows square dependence
on the cavity radius, which coincides with our theoretical
predictions.

7. Conclusion

We have shown theoretically that the Raman gain in an SRS
process is associated with the intrinsic properties of the active

medium only. This gain cannot be changed via redistribution
of the mode density in a cavity. The enhancement of efficiency
of the scattering results from energy accumulation in the cavity
modes. In general, this conclusion is valid for any nonlinear
process, e.g. four-wave mixing. Spontaneous emission, in
turn, may be enhanced or suppressed by a cavity. The size
dependence, observed for SRS in microdroplets, may result
from the size-dependent coupling efficiency with the droplets
as well as from size dependent quality factor of the droplets.
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